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® in the first phase the area is partitioned into regubdygons of the same size
and points are randomly or systematically thrownaichepolygon.
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Most forest surveys performed over large scale, ssictatonal forest inventories
iInvolve two phases of sampling:

® in the first phase the area is partitioned into regubdygons of the same size
and points are randomly or systematically thrownaichepolygon.
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remote sensing information (photo-interpreted lamvkc class, elevation,
thematic mapping spectral bands etc.) is recordeddoh first-phase point



e in the second phase, a sample of first-phase points @eskia accordance
with a probabilistic sampling scheme




e inthe second phase, a sample of first-phase points @extia accordance
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the second-phase points are visited on the groundler tw record several
variables (actual land use class, forest category vioiad volume, tree basal
area and biomass etc.) within plots of prefixed serdred at these points



Nonresponse mostly occurs when some second-phase poiflisades in difficult
terrains and cannot be reached by the survey cregven if reached, the steep slope
of the terrain does not allow the recording acegtwithin the plot
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Nonresponse mostly occurs when some second-phase poilusadesl in difficult
terrains and cannot be reached by the survey cregven if reached, the steep slope
of the terrain does not allow the recording acegtwithin the plot

® some attempts for treating nonresponse in forest inseate proposed by
McRoberts (2003) and Scott et al. (2004)

® from a more general point of view, a vast statistibadature deals with the
problem of nonresponse



Nonresponse Propensity Weighting:

a random response mechanism is assumed in such aavaath population unit
has its own (invariably positive) response probabdiiygl responds independently
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In forest inventories unit responses cannot be viewediicomes of
dichotomous and independent experiments:

- If some points cannot be reached, no random expatioan be claimed
as these points will never be reached

- neighbouring points, lying in terrains with the sarharacteristics, tend
to have the same response pattern



Nonresponse Propensity Weighting:

a random response mechanism is assumed in such aavaath population unit
has its own (invariably positive) response probabdiiygl responds independently

to the others

In forest inventories unit responses cannot be viewediicomes of
dichotomous and independent experiments:

- If some points cannot be reached, no random expatioan be claimed
as these points will never be reached

- neighbouring points, lying in terrains with the sarharacteristics, tend
to have the same response pattern
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the use of nonresponse propensity weighting in foresegarmloes not seem to
be logically defensible



Imputation Technique@egression imputation, nearest neighbour imputation,
hot deck imputation and multiple imputation):

missing values are replaced by substitutes, the impadeds, which are usually

obtained by means of a prediction model presumirggadionship among the
Interest variable and a set of variables and estoimadiperformed on the completed

data



Imputation Technique@egression imputation, nearest neighbour imputation,
hot deck imputation and multiple imputation):

missing values are replaced by substitutes, the impadeds, which are usually

obtained by means of a prediction model presumirggadionship among the
Interest variable and a set of variables and estoimadiperformed on the completed

data

But prediction models cannot be validated in theoEabnrespondents

: 1

it is difficult to scientifically defend any proposeatethod/model of imputation



As both nonresponse propensity weighting and imputatemmniques are not
enough convincing for treating nonresponse in foresentories, a complete

design-based treatment of nonresponse, viewing intefteibiutes and nonresponse
as fixed characteristics, is considered
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design-based treatment of nonresponse, viewing intefteibiutes and nonresponse
as fixed characteristics, is considered
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Fattorini et al. (2013) propose the use of a teclenrgaently referred to as
nonresponse calibration weighting (Haziza et al., 2010).



Nonresponse Calibration Weighting (NCW):

the weights originally attached to each respondeiiwe modified into new weights
able to estimate the population means of a set oliayxvariables without error

Rationale if a relationship exists between the interest and abiliary
variables, the calibration weights should also b&akle for estimating the
population mean of the interest variable
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Nonresponse Calibration Weighting (NCW):

the weights originally attached to each respondeiiwe modified into new weights
able to estimate the population means of a set oliayxvariables without error

Rationale if a relationship exists between the interest and abiliary
variables, the calibration weights should also b&akle for estimating the
population mean of the interest variable

Remarks

* NCW does not need to refer explicitly to any modalpwing for a
straightforward design-based treatment

* NCW both reduces nonresponse bias and ensures consisteray thh
relationships among interest and auxiliary variabke® similar in
respondents and nonrespondents

* NCW can even increase the accuracy of estimatioh vaspect to the
complete-sample estimation when a close linear oglgtiip exists among
Interest and auxiliary variables



Second-phase calibration estimator
T parameter of interest: total of an attribute (wootliine, basal area, etc. )

R second-phase respondent sample (points allowing riagoadtivities)

_ T . . .
Xj = [le’---’XjK] values ofK auxiliary variables recorded on tjxh point

where
X is the mean vector of the auxiliary variables in thetfplsase sample

-1 "

" xjxjT zjjT
br=| X >
iR

iR T T;

7, first-order inclusion probabilities

N

T; total estimate in thgth plot



How to select auxiliary information:

the auxiliary variables should be chosen in suclag that their relationship
(linear or not, intense or not) with the interestatale is similar in respondents and

nonrespondents



How to select auxiliary information:

the auxiliary variables should be chosen in suclag that their relationship
(linear or not, intense or not) with the interestatale is similar in respondents and
nonrespondents

In recent years airborn laser scanning is increagitgding applied in forest
Inventories, providing measurements of the heighipgfer canopy for the surveyed
area:

- canopy height data are often available at low @navo cost

- a close relationship has been proven between thetiaddume (or tree biomass)
of the inventory plots and the canopy height mo@&iN1) data obtained from ALS
surveys (e.g. Corona and Fattorini, 2008, Gregoiet. €2011, Corona et al., 2012)

- the relationship is likely to hold irrespective oétfact that plots can be reached
or not
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In recent years airborn laser scanning is increagitgding applied in forest
Inventories, providing measurements of the heighipgfer canopy for the surveyed
area:

- canopy height data are often available at low @navo cost

- a close relationship has been proven between thetiaddume (or tree biomass)
of the inventory plots and the canopy height mo@&iN1) data obtained from ALS
surveys (e.g. Corona and Fattorini, 2008, Gregoiet. €2011, Corona et al., 2012)

- the relationship is likely to hold irrespective oétfact that plots can be reached

or not 1

the exploitation of CHM data as auxiliary variableder the NCWapproach
seems to be a suitable estimation strategy
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In order to evaluate the use of CHM data as auxivanable under the NCW
approach a simulation study was performed

The artificial population
® a quadrat study region of side 20 km was assumed

® the forest portion was : - the 35% of the whole area

- constituted by two rectangles corresponding to two
different forest categories (size 8000ha and 6000ha)
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Simulation Study
In order to evaluate the use of CHM data as auxivanable under the NCW
approach a simulation study was performed

The artificial population
® a quadrat study region of side 20 km was assumed

® the forest portion was : - the 35% of the whole area

- constituted by two rectangles corresponding to two
different forest categories (size 8000ha and 6000ha)

Non respondent pattern:

" F, nonresponse area of 5%

= F, nonresponse area of 15%
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The generation of CHM data and volume values:

= F, and F, were partitioned into a discrete population of &@ &0 millions of

pixels of size 1 mq labelled by a couple of integdentifying their position in the
study region

» for each pixel the canopy height within was obtairfiesin the mixture of 20
bivariate normal probability density functions withffdrent mean vectors and
variance-covariance matrices

= in order to represent a forest coverage of about #OF% and a forest coverage of
about 90% inF, about 60% and 10% of the heights were respectivelyosét by
means of a mathematical function



The generation of CHM data and volume values:

= F, and F, were partitioned into a discrete population of &@ &0 millions of
pixels of size 1 mq labelled by a couple of integdentifying their position in the
study region

» for each pixel the canopy height within was obtairfiesin the mixture of 20
bivariate normal probability density functions withffdrent mean vectors and
variance-covariance matrices

= in order to represent a forest coverage of about #OF% and a forest coverage of
about 90% inF, about 60% and 10% of the heights were respectivelyosét by
means of a mathematical function

" in accordance with the results of some empiricalestigations (Bortolot and
Wynne, 2005), for each pixel the tree volume wasuyoreed to be a linear function of
the squared canopy height, perturbed by a periogiction



Rggiﬂn Fy Region F;
Fl |:2
Total canopy height 319 999 999.7 m 540 000 000.0 m
Total Volume 5639 462.9 19 042 212.3 /n
Maximum canopy height 16.47 m 19.66 m
at pixel level




Canopy height vs volume at plot level in a sample of-fiisdse points
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Survey simulation:

=1,000 two-phase inventories were simulated

At each run:

= the study region was partitioned into quadrats of 3fzba

= the first phase sampling was implemented by randoif85) or systematically
(SGS) selecting a point within each quadrat
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Survey simulation:

=1,000 two-phase inventories were simulated

At each run:

= the study region was partitioned into quadrats of 3fzba
= the first phase sampling was implemented by randoif85) or systematically
(SGS) selecting a point within each quadrat

* in the second phase, the first-phase points wereipa€it on the basis of their
position into 3 strata:

- the stratum of points falling outside the two fomregfions

- the stratum of points falling iR,

- the stratum of points falling iR,

From each forest stratum a sample of second-phase points weatedel
by means of SWSROR (sampling fraction equals to 0.25)

Finally, the respondent sample was derived discar@iagoints
falling within the nonresponse areas and for each regdmpoint a
circular plot - centred at the point - of radius 13wals considered
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Two alternative choices of the auxiliary variablesre considered:

1) Two auxiliary variables: the “intercept” and tléal canopy height of the pixels
In the selected plot
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Simulation results

As benchmarks, the following two estimators were atsoputed:

- Toyt the complete-sample estimator achieved if all thersgéphase points were
visited

- 'I%ZR the estimator based on the sole sample of respondents

The following performance indicators were considered:

- relative bias (RB)

- relative root mean squared error (RRMSE)

- expectation of the relative standard error estinsai6RSEE)

- coverage of the confidence intervals at the nomeadl of 95% (COV95)



Simulation results

TSS SGS
RB RRMSE| RB | RRMSE
Ty 0.1% = 2.9% | -0.1% | 2.8%
Tor -12.8% 13.5% [-132% | 13.7%
Tocur 13%  3.0% | -13% | 2.8%
A o 5 -
Dearrr, | 027  22% | 02% 1 2.0%
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TSS SGS
RB RRMSE| RB | RRMSE
Ty 0.1% = 2.9% | -0.1% | 2.8%
Tor -12.8% 13.5% [-132% | 13.7%
Tocur 13%  3.0% | -13% | 2.8%
/. o
Dearrr, | 027  22% | 02% 1 2.0%

v the estimator based on the sole respondent samplesshowonsiderable
downward relative bias

v Toca shows a remarkable reduction in the relative bias coetpaith the sole
respondent estimator

v the relative bias of the calibration estimaleraL,rF, turns out to be negligible,
with a performance comparable with that of the cletepsample estimator



Simulation results

TSS first-phase sampling scheme
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ERSEE COV95
RB |RRMSE|SYG| HT | Jack |SYG| HT | Jack
fchL -1.3% | 2.8% [|5.3%|5.5%(5.4% | 1.00|1.00|1.00
I%ZCALFIF2 -0.2% | 2.0% [5.0%5.0%|5.1%| 1.00 | 1.00|1.00

v'as to the variance estimators, they reveal to bdyhaimnservative

v’ coverage of the confidence interval were invariaiplgater than the nominal

value
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Survey simulation — The use of the auxiliary variable

Denote byh; the CHM height within the j-th p(etm of the heights within the

pixels belonging to the plot)

Two alternative choices: —
1)

in such a way thatX is the mean vector whosepoaents are:

- fraction of first-phase points falling in forest regs

- average CHM height of the first-phase points fallimdarest regions

2) X; =16 (D e (Do e (DD e GOy |

)\

in such a way thatX  is the mean vector whosgooents are:

- fraction of first-phase points falling i,
- fraction of first-phase points falling i,
- average CHM height of the first-phase points falimé

-average CHM height of the first-phase points fallmé, /

— TocaL

— TocaLFF,



