EFFECT OF SCANNING ANGLE ON VEGETATION METRICS DERIVED FROM A NATIONWIDE AIRBORNE LASER SCANNING ACQUISITION

Alessandro Montaghi
Department of Agroecology
Aarhus University, Denmark

Håkan Olsson
Section of Forest Remote Sensing
Department of Forest Resource Management, Swedish University of Agricultural Sciences, Sweden

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

SLU Umeå campus

Department of Forest Resource Management (1 10 Full-time employees)

Sections of

- Forest Remote Sensing
- Forest Planning
- Forest Inventory and Statistics
- Landscape Analysis

FOREST REMOTE SENSING SECTION (SKOGLIG FJÄRRANALYS)

LiDAR

The section conducts research regarding the remote sensing of forests and vegetation, and applies research results to environmental analysis.

Total around 20 people, including
1 Professor, 3 Assistant Professors, 3 Senior researchers, 1 Lecturer,
5 Research Engineers/Assistants, \& 6 PhD students

FROM TANDEM-X (december acquisition, $\mathrm{H}_{\mathrm{amb}}=189 \mathrm{~m}$)

Digital photogrammetry

LIDAR BASIC PRINCIPLE

LiDAR (Light Detection and Ranging) systems can emit pulses at rates > 200,000 pulses per second referred to as pulse repetition frequency. A pulse of laser light travels at c, the speed of light ($3 \times 108 \mathrm{~ms}^{-1}$). LiDAR technology is based on the accurate measurement of the laser pulse travel time from the transmitter to the target and back to the receiver. The traveling time of a pulse of light, t, is:

$$
t=2 \frac{R}{c}
$$

Where R is the range (distance) between the LiDAR sensor and the object. The range, R can be determined by rearranging the equation:

$$
R=\frac{1}{2} \mathrm{t} * \mathrm{c}
$$

AIRBORNE LASER SCANNER

$449628.466244026 .590 .4711100042-29311479827.44332518944 \quad 23040 \quad 22784$ $449628.556244033 .120 .302110042-2831479827.4434212048024832 \quad 24832$ $449628.756244046 .310 .37 \quad 31100042-26311479827.443616202242457624064$ $449628.816244049 .630 .44111100042-25311479827.44366619712 \quad 23552 \quad 23296$ $449628.816244049 .880 .395110042-2531479827.443671204802406423808$ $449628.816244050 .660 .30111100050-2531479827.443683 \quad 20992 \quad 24320 \quad 24064$ 449628.966244060 .67 0.38 $211100042-23 \quad 311479827.443837 \quad 20736 \quad 24320 \quad 24320$ $449629.186244075 .610 .392110042-2131479827.444074199682406423808$ $449629.246244078 .720 .474110042-2031479827.444124220162560025344$ $449629.246244078 .960 .4181100042-20311479827.444128 \quad 20992 \quad 24320 \quad 24320$ $449629.236244079 .190 .3441100042-2031479827.4441321207362432024064$ $449629.296244082 .540 .435110042-1931479827.444187202242406423808$ $449629.296244082 .770 .3511100042-1931479827.444191189442278422528$ $449629.296244083 .040 .38111100042-1931479827.44419519200 \quad 2329623040$ $449629.346244085 .60 \quad 0.4512110042-1931479827.4442361945623808 \quad 23296$ $449629.336244085 .830 .394110042-1931479827.4442411945623552 \quad 23296$ $449629.346244086 .330 .3511100042-1931479827.44424919712 \quad 2406423808$

The across-track swath width (sw) is given by:

SCANNING ANGLE

$$
s w=2 h \tan \frac{\psi}{2}
$$

SCANNING PATTERNS

Overview of Mirror Scanners
Name Principle Scanning Pattern Oscillating mirror scanner Oscillating mirror scanner with cam drive Polygon scanner

constant-velocity rotating polygon mirror

oscillating mirror scan mechanism (seems to be more popular for airborne lidar systems)

Sinusoidal Pattern, Non - Uniform
Sawtooth Pattern, Mostly Uniform

THE NEW SWEDISH NATIONWIDE ELEVATION MODEL (IN SWEDISH: NY NATIONELL HOJDMODELL)

The new Swedish Nationwide Elevation Model in numbers and facts:

- Produce a Digital Elevation Model (DEM) with high and known accuracy for entire Sweden ($450,000 \mathrm{~km}^{2}$, the fourth largest country in Europe).
- Seven years project (started July 2009), including about 4 years for scanning.
- A total of about four hundred scanning areas, with a size of 25 km by 50 km ($1250 \mathrm{~km}^{2}$), will be collected with a nominal density of 0.5 points per square meter (in single flight lines) and with a footprint on the ground of 0.5 meters.
- Each scanning area, twenty-one parallel flight lines were flown with a nominal overlap of 20%, in addition to three perpendicular crossing lines. The cross strips were located in the top, middle, and bottom within the block, along the small side.
- Delivery data: available approximately 6 months after scan of the actual area.

The output is a raster grid of 2 m by 2 m pixel resolution, delivered in blocks of 2.5 km by 2.5 km .
$\xrightarrow[\text { LANTMÄTERIET }]{\text { LAN }}$

THE NEW SWEDISH NATIONWIDE ELEVATION MODEL (IN SWEDISH: NY NATIONELL HOJDMODELL)

This flight line arrangement with
 two different directions was designed to allow the strip adjustment techniques, based on sensor parameter calibration, necessary to create a seamless final product.

STUDY AREAS

The study was conducted within two sites in Sweden. The first study site (approximately $7,500 \mathrm{~km}^{2}$) was located in boreal forest in the northern part of Sweden with a central point of Lat. N $65^{\circ} 50^{\prime}$, Lon. E $21^{\circ} 43^{\prime}$. The topography ranged from 0 to 590 m above sea level (a.s.l.). The second study site $\left(8,162 \mathrm{~km}^{2}\right)$ was situated in hemi-boreal forest in the southern part of Sweden with a central point of Lat. N $56^{\circ} 27^{\prime}$, Lon. E $13^{\circ} 35^{\prime}$ and topography ranging from 0 to 290 m a.s.l.

	Scanning area	sensor	Interval date(s) of survey (DD-MM-YYYY)	$\begin{gathered} \text { Flying } \\ \text { height } \\ \text { (m a.g.l.) } \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Flying } \\ \text { speed } \\ \text { (knots) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Pulse frequency } \\ & (\mathrm{kHz}) \end{aligned}$	Scanning frequency (Hz)	Point density (points per square meters)	$\begin{gathered} \text { Scanning } \\ \text { angle } \\ \text { (degrees) } \end{gathered}$
$\begin{aligned} & \stackrel{y}{n} \\ & \text { ᄃ } \\ & \frac{1}{0} \\ & \stackrel{ \pm}{t} \\ & \frac{0}{Z} \end{aligned}$	09G001	ALS60	24-08-2009/16-09-2009	2391	146	102.4	39.4	0.5	± 20
	09G002	ALS60	13-08-2009/21-09-2009	2533	142	102.4	39.4	0.5	± 20
	о9нооз	ALS60	21-08-2009/10-09-2009	2318	144	102.4	39.4	0.5	± 20
	о9н016	ALS60	27-08-2009/23-09-2009	2328	142	102.4	39.4	0.5	± 20
	09H018	ALS60	21-09-2009/27-09-2009	2307	138	102.4	39.4	0.5	± 20
	о9н017	ALS50-II	14-08-2009/14-09-2009	2300	134	102.4	39.4	0.5	± 20
$\begin{aligned} & \stackrel{y}{n} \\ & \stackrel{5}{0} \\ & \stackrel{ \pm}{5} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$10 \mathrm{AO12}$	ALS60	12-04-2010/14-04-2010	2259	129	104.1	39.4	0.6	± 20
	$10 \mathrm{AO14}$	ALS60	02-04-2010/01-07-2010	2275	135	104.1	39.4	0.6	± 20
	$10 \mathrm{AO31}$	ALS60	19-04-2010/02-06-2010	2317	140	104.1	39.4	0.6	± 20
	$10 \mathrm{A007}$	ALS50-II	03-04-2010/12-04-2010	2215	139	104.1	39.4	0.6	± 20
	104009	ALS50-II	13-04-2010/15-04-2010	2252	138	104.1	39.4	0.6	± 20
	$10 \mathrm{AO11}$	ALS50-II	03-04-2010/11-04-2010	2217	137	104.1	39.4	0.6	± 20
	104013	ALS50-II	15-04-2010/27-05-2010	2300	137	104.1	39.4	0.6	± 20

DESIGN OF EXPERIMENT

100 m

A grid with $100 \times 100 \mathrm{~m}$ cells was laid over each crossing between main and crossing strips, and in each grid cell a random sample point was created. For each point, a square of 10 m by 10 m was created with random orientation.

- Only those samples belonging entirely within forested areas were considered.
- Samples were rejected if the returns had scanning angles other than zero degrees for the perpendicular crossing lines and if all returns did not have the same scanning angle for the parallel flight line.
- samples were rejected if the data survey for the perpendicular crossing lines and parallel flight lines was not carried out on the same day.

These criteria reduced the number of samples to 1,309 for the northern site and 1,001 for the southern site, with each sample flown with two different acquisitions: one with a scanning angle of 0 degrees (cross strips) and the other with an absolute scanning angle ranging from 0 to ≤ 20 degrees (main strips).
8. May 2013

8. May 2013

Using sinusoidal distribution, the distance between each point near nadir and on the edge of the swath are different. The point spacing is minimal at the center of the swath (at nadir) and increases toward the edges of the scan line since the oscillating mirror moves fastest in the center of the swath and slower at the edges. The result is that the space between each laser point near nadir and the space between each laser point at the edge of the swath are different.

8. May 2013

STATISTICAL ANALYSIS

A non-parametric Wilcoxon signed-rank test was employed to determine whether individual metrics were statistically significant inside each scanning angle class. The following hypotheses were tested for each ALS metric:
H_{0} No difference exists between metrics derived from a scanning angle of 0 degrees and metrics derived from an absolute scanning angle ranging from 0 to 20 degrees;
$H_{a} \cdot \mathrm{~A}$ difference exists between metrics derived from a scanning angle of 0 degrees and metrics derived from an absolute scanning angle ranging from 0 to 20 degrees.

If the test results were significant ($p<0.05$), then H_{0} was rejected and the alternative hypothesis was accepted. Accepting the alternative hypothesis indicated that the scanning angle had an influence on the repeatability of the ALS metric used for describing the forest structure.

$$
\begin{aligned}
& M A D=\frac{1}{n} \sum_{j=1}^{n}\left|y_{\left|k^{\circ}\right|, j}-y_{0^{\circ}, j \mid}\right| \text { Mean Absolute Difference } \\
& \text { RMSD }=\frac{\sqrt{\left(y_{\left|k^{\circ}\right|, j}-y_{0^{\circ}, j}\right)^{2}}}{n} \quad \text { Root-Mean-Square Differer }
\end{aligned}
$$

where $y\left|\mathrm{k}^{\circ}\right|$, j is the ALS metric value (y) derived from the main strips and having an absolute scanning angle (k) ranging from nadir to 20 degrees in plot- j , $y 0^{\circ}, j$ is the value of the metric (y) from the scanning angle at nadir in plot-j belonging to the cross strips, and n is the number of plots.

Both the MAD and RMSD can range from 0 to positive infinity, with a value of 0 corresponding to the ideal $\left(\Sigma y\left|k^{\circ}\right|, j=\Sigma y 0^{\circ}, j\right)$.

Plot-level Wilcoxon signed-rank test for the Northern Site. Pairwise scanning angle classes were created based on comparison of two metrics: one metric acquired at 0° from cross-strips and the second metric acquired at an (absolute) scanning angle (k, where $k=0,1,2 \ldots 20$) from main strips. Class names are $\frac{\text { given as } 0-k \text {. }}{\text { Survey interval: }}$

Significance levels: ${ }^{* * *}$ p-value <0.001; $^{* *}$ p-value <0.01; $^{*} p$-value $<0.05 ;$. p-value <0.1; blank space $=$ not significant.

Plot-level Wilcoxon signed-rank test for the Southern Site. Pairwise scanning angle classes were created based on comparison of two metrics: one metric acquired at 0° from cross-strips and the second metric acquired at an (absolute) scanning angle (k, where $k=0,1,2 \ldots 20$) from main strips. Class names are given as $0-k$.

Significance levels: ${ }^{* * *}$ p-value < 0.001; ${ }^{* *}$ p-value < 0.01; * p-value <0.05; . p-value <0.1; blank space $=$ not significant.
8. May 2013

Distributional metrics

MAD
Mean Absolute Difference a) and b)

RMSD
Root-Mean-Square Difference
c) and d)

Height metrics

MAD
Mean Absolute Difference a) and b)

RMSD
Root-Mean-Square Difference
c) and d)

South site

Structural descriptor metrics

MAD
Mean Absolute Difference
a) and b)

RMSD
Root-Mean-Square Difference
c) and d)

MAD
Mean Absolute Difference a) and b)

RMSD
Root-Mean-Square Difference
c) and d)

North site - Vegetation ratio

8. May 2013

AARHUS
UNIVERSITET

South site - Vegetation ratio

8. May 2013

remarks

- that there was a scanning angle influence on the point density metrics and also on Understory and Vegetation ratio for both the northern and southern study sites;
- the Understory ratio and the Vegetation ratio were stable for scanning angles up to about 10 degrees off-nadir;
- with an off-nadir incident angle each laser beam passes a longer distance through the canopy and therefore the probability is higher that the light is reflected from the canopy;
- The difference in point density from nadir to large scanning angles is related to the sinusoidal scanning pattern where the distance between each point near nadir and on the edge of the swath are different;
- The increment of standard deviation in the higher scanning angle classes may also be related to the influence of the pulse power to detect canopy elements. A pulse frequency emitted at 100 kHz , as used in this study, returns data with more "noise" and it is more appropriate for detecting the upper part of the canopy, because laser pulses emitted at that frequency did not penetrate as deeply into the canopy;
- the Understory ratio and the Vegetation ratio were stable for scanning angles up to about 10 degrees off-nadir;
- the results presented here show that care must be taken when considering forest change detection when using ALS-derived vegetation metrics, especially forest density metrics (e.g., Vegetation ratio and Understory ratio). The difference in the magnitude of the changes may be confused with apparent differences at coincident survey times due at an off-nadir scanning angle effect.

